Dérivées et intégrales
    Formules
    
        Dérivées
        Attention à ajouter la constante d'intégration \( C \)
        \(a, b, c, d, e \) sont des paramètres (même \(e\))
        
            
                
                    | Primitive | Fonction | Dérivée | 
                
                    | \[ \frac{a\blue{x}^{b + 1}}{b + 1} + c\blue{x} \] | \[ a \blue{x}^b + c \] | \[ b a \blue{x}^{b - 1} \] | 
                
                
                    | \[ \frac{a b^{c \blue{x} + d}}{c ~ ln(b)} + e \blue{x}\] | \[ ab^{c\blue{x} + d} + e \] | \[ cab^{c\blue{x} +d} ln(a) \] | 
                
                    | \[ \frac{\blue{x} log_a(\blue{x})}{ln(a)} \] | \[ log_a( \blue{x} ) \] | \[ \frac{1}{ \blue{x} ln(a)} \] | 
                
                    | \[ \] | \[ \blue{x}^{\blue{x}} \] | \[ \blue{x}^{\blue{x}}ln(\blue{x} + 1) \] | 
            
            
                
                    | Fonction | Dérivée | 
                
                    | \[ a \cdot f(\blue{x}) \] | \[ a \cdot f'(\blue{x}) \] | 
                
                    | \[ f(\blue{x} )\green±g(\blue{x} )\] | \[ f'(\blue{x} )\green±g'(\blue{x} )\] | 
                
                    | \[ f(\blue{x}) \cdot g(\blue{x}) \] | \[ f'(\blue{x}) \cdot g(\blue{x}) + f(\blue{x}) \cdot g'(\blue{x} )\] | 
                
                    | \[ \frac{f(\blue{x})}{g(\blue{x})} \] | \[ \frac{f'(\blue{x}) g(\blue{x}) - f(\blue{x}) g'(\blue{x})}{(g(\blue{x}))^2} \] | 
                
                    | \[ f(g(h(\blue{x}))) \] | \[ f'(g(h(\blue{x}))) \cdot g'(h(\blue{x})) \cdot h'(\blue{x}) \] | 
                
                    | \[ f^{-1}(\blue{x}) \] | \[ \frac{1}{f'(f^{-1}(\blue{x}))} \] | 
            
            
                
                    | Fonction | Dérivée |  | Fonction | Dérivée | 
                
                    | \[ sin(\blue{x}) \] | \[ cos(\blue{x}) \] |  | \[ cos(\blue{x}) \] | \[ -sin(\blue{x} )\] | 
                
                    | \[ tan(\blue{x}) \] | \[ 1 + tan^2(\blue{x}) \]
                        \[ \frac{1}{cos^2(\blue{x})} \] |  | \[ cot(\blue{x}) \] | \[ -(1 + cot^2(\blue{x})) \] | 
                
                    | \[ sec(\blue{x}) \] | \[ sec(\blue{x})tan(\blue{x}) \] |  | \[ csc(\blue{x}) \] | \[ -csc(\blue{x})cot(\blue{x}) \] | 
                
                    |  |  |  |  |  | 
                
                    | \[ sin^{-1}(\blue{x}) \] | \[ \frac{1}{\sqrt{1 - x^2}} \] |  | \[ cos^{-1}(\blue{x}) \] | \[ -\frac{1}{\sqrt{1 - x^2}} \] | 
                
                    | \[ tg^{-1}(\blue{x}) \] | \[ \frac{1}{1 + \blue{x}^2} \] |  | \[ cot^{-1}(\blue{x}) \] | \[ -\frac{1}{1 + \blue{x}^2} \] | 
                
                    | \[ sec^{-1}(\blue{x}) \] | \[ \frac{1}{|\blue{x}|\sqrt{\blue{x}^2 - 1}} \] |  | \[ csc^{-1}(\blue{x}) \] | \[ -\frac{1}{|\blue{x}|\sqrt{\blue{x}^2 - 1}} \] | 
            
         
    
    
        Intégrales
        
            
                \[ \begin{aligned}
                & \int_\orange{a}^\orange{b} f(x)dx = \orange{-} \int_\orange{b}^\orange{a} f(x)dx \\[2em]
                & \int u' e^{u} dx = e^{u} + C \\[2em]
                & \int \frac{u'}{u} dx = ln(u) + C \\[2em]
                & \int \frac{u'}{1 + u^2} = tg^{-1} (u) + C \\[2em]
                & \int u'u^n dx = \frac{u^{n + 1}}{n + 1} + C
                \end{aligned} \]
            
            
                
                    | Intégrales simples | 
                
                    | Fonction | Dérivée | 
                
                    | \[ \frac{1}{3} \blue{u}^3 \] | \[ \blue{u}^2 \blue{u}' \] | 
                
                    | \[ \frac{1}{2} \blue{u}^2 \] | \[ \blue{u} \blue{u}' \] | 
                
                    | \[ \blue{u} \] | \[ \blue{u}' \] | 
                
                    | \[ ln(\blue{u}) \] | \[ \frac{\blue{u}'}{\blue{u}} \] | 
                
                    | \[ - \frac{1}{\blue{u}} \] | \[ \frac{\blue{u}'}{\blue{u}^2} \] | 
                
                    | \[- \frac{1}{2\blue{u}^2} \] | \[ \frac{\blue{u}'}{\blue{u}^3} \] | 
            
            
                
                    | Intégrales utiles | 
                
                    | Fonction | Dérivée | 
                
                    | \[ \blue{x} ~ ln(\blue{x}) - x \] | \[ ln(\blue{x}) \] | 
                
                    | \[ ln(\blue{u}^n) \] | \[ \frac{n}{\blue{u}} \] | 
                
                    |  | 
                
                    | \[ atg(\blue{u}) \] | \[ \frac{\blue{u}'}{1 + \blue{u}^2} \] | 
                
                    | \[ \frac{1}{a} atg(\frac{\blue{u}}{a}) \] | \[ \frac{\blue{u}'}{a^2 + \blue{u}^2} \] | 
                
                    | \[ (\blue{u} \blue{v})' - \blue{u}' \blue{v} \] | \[ \blue{u} \blue{v}' \] | 
            
         
    
    
        Taylor-Young et Maclaurin
        
            
                
                    | \[ t(\blue{x}) = f(x_0) + f'(x_0)(\blue{x} - x_0) \] | \[ \begin{aligned}
                        & \text{linéarisation en } x_0 \\
                        & \text{fonction de la tangente en } x_0
                        \end{aligned}\] | 
                
                    | \[ \begin{aligned}
                        & T_1(\blue{x}) = f(x_0) + f'(x_0)(\blue{x} - x_0) + o(x) \\[2em]
                        & T_2(\blue{x}) = f(x_0) + f'(x_0)(\blue{x} - x_0) + \frac{f''(x_0)}{2!}(\blue{x}-x_0) +
                        o(x^2)
                        \\[2em]
                        & T_3(\blue{x}) = f(x_0) + f'(x_0)(\blue{x} - x_0) + \frac{f''(x_0)}{2!}(\blue{x}-x_0) +
                        \frac{f'''(x_0)}{3!}(\blue{x}-x_0) +o(x^3)
                        \end{aligned}\] | 
                
                    | \[ T_n(\blue{x}) = \sum_{k=0}^{n} \frac{f^{(k)}(x_0)}{k!} (\blue{x} - x_0)^k + R_n(x) \] | Formule générale | 
            
         
        
            \[ \begin{aligned}
            \lim_{x \to x_0} \frac{f(x)}{g(x)} \quad = \quad \lim_{x \to x_0} \frac{F_n(x) + o(x^n)}{G_n(x) +
            o(x^n)}
            \quad \overset{x_0 = 0}{=}
            \quad \lim_{x \to x_0} \frac{f(0) + f'(0)x + \frac{f''(0)}{2!}x^2 + \frac{f'''(0)}{3!}x^3 + ... +
            \frac{f^k(0)}{k!}x^k}{g(0) + g'(0)x + \frac{g''(0)}{2!}x^2 + \frac{g'''(0)}{3!}x^3 + ... +
            \frac{g^k(0)}{k!}x^k}
            \end{aligned}\]
        
    
    Techniques
    
        Intégration par parties
        
            \[ (fg)' = f'g + fg'
            \quad\Longleftrightarrow\quad\quad
            \int fg' ~~=~~ fg ~~-~~ \int fg' \]
        
        
            \[ \begin{aligned}
            & \int ln(x) ~dx
            \quad
            \begin{array}{l}
            & x && \overset{'}{\rightarrow} && 1 \\[1em]
            & ln(x) && \overset{'}{\rightarrow} && \frac{1}{x}
            \end{array}
            \\[3em]
            & \int 1 ~ ln(x) ~ dx \quad=\quad
            x ~ ln(x) ~~-~~ \int x \frac{1}{x} ~ dx \\[2em]
            & \int ~ ln(x) ~ dx \quad=\quad
            x ~ ln(x) ~~-~~ \int 1 ~ dx \\[2em]
            & \int ln(x) ~ dx \quad=\quad
            x ~ ln(x) ~~-~~ x \\[2em]
            \end{aligned} \]
        
    
    
        Changement de variable
        
            Rappel
            \[ f(x) = y \quad\Rightarrow\quad f'(x) = \frac{dy}{dx} \]
        
        
            \[ \begin{aligned}
            & I = \int_{\green{0}}^{\green{1}} \sqrt{ 1 - \green{y}^2 } ~~ \green{dy}
            \\[2em]
            & \green{y} = cos(\orange{x})
            \quad\Rightarrow\quad
            cos'(x) = \frac{\green{dy}}{\orange{dx}} = -sin(\orange{x})
            \quad\Rightarrow\quad
            \green{dy} =-sin(\orange{x}) \orange{dx}
            \\[1em]
            &
            \green{y} = \green{0} \quad\Longleftrightarrow\quad \orange{x} = \orange{\frac{ \pi }{ 2 }} \\[1em]
            &
            \green{y} = \green{1} \quad\Longleftrightarrow\quad \orange{x} = \orange{0}
            \\[2em]
            &
            I = \int_{\orange{\pi / 2}}^{\orange{0}}
            \sqrt{1 - cos(\orange{x})^2 } ~~
            (-sin(\orange{x})) \orange{dx}
            \gray{
            \quad= - \int_{\pi / 2}^{0} \sqrt{sin(x)^2} ~ sin(x) ~ dx =
            \int_{0}^{\pi / 2} sin(x)^2 ~ dx
            }
            \\[2em]
            & = \underline{\underline{\frac{1}{4} \pi}}
            \end{aligned} \]
        
        
            \[ \begin{aligned}
            & I = \int_{\orange{0}}^{\orange{\frac{\pi}{4}}} tg(\orange{x})^3 ~~ \orange{dx}
            \\[2em]
            & \green{y} = tg(\orange{x})
            \quad\Rightarrow\quad
            tg'(\orange{x}) = \frac{\green{dy}}{\orange{dx}} =
            1 + tg(\orange{x})^2 = 1 + \green{y}^2
            \quad\Rightarrow\quad
            \orange{dx} = \frac{1}{1 + \green{y}^2} ~ \green{dy}
            \\[1em]
            &
            \green{y} = \green{0} \quad\Longleftrightarrow\quad \orange{x} = \orange{0}
            \gray{\quad\Longleftrightarrow y = tg(0)} \\[1em]
            &
            \green{y} = \green{1} \quad\Longleftrightarrow\quad \orange{x} = \orange{\frac{\pi}{4}}
            \gray{\quad\Longleftrightarrow y = tg(\frac{\pi}{4})}
            \\[2em]
            & I = \int_{\green{0}}^{\green{1}}
            \green{y}^3 \frac{1}{1 + \green{y}^2} ~ \green{dy}
            \gray{
            \quad=\quad \int_{0}^{1} \frac{y^3}{1 +y^2 } ~~ dy
            \quad=\quad \int_{0}^{1} y - \frac{y}{1 +y^2 } ~~ dy
            \quad=\quad \int_{0}^{1} y ~ dy - \int_{0}^{1}\frac{y}{1 +y^2 } ~~ dy
            \quad=\quad \left[ \frac{1}{2} \right]_0^1 - \left[ \frac{1}{2} ln(1 + y^2)\right]_0^1
            }
            \\[2em]
            & = \underline{\underline{ \frac{1}{2} - \frac{1}{2} ln(2) }}
            \end{aligned} \]