fonction
\[ f(x) \]
\[ x^2-2x+1 \]
\[ D(f)=\mathbb{R} \quad;\quad Im(f)=\mathbb{R}_+ \]
|
opposée
\[ -f(x) \]
\[ -(x^2-2x+1) \]
\[ D(-f)=\mathbb{R} \quad;\quad Im(f)=\mathbb{R}_- \]
|
?
\[ f(-x) \]
\[ (-x)^2-(-2x)+1 \]
\[ D(?)=\mathbb{R} \quad;\quad Im(?)=\mathbb{R}_+ \]
|
réciproque ("inverse")
\[f^{-1}(x)\]
\[
\left\{ \begin{array}{ll}
x \ge 0 \quad 1 + \sqrt{x} \\[1em]
x \le 0 \quad 1 - \sqrt{x}
\end{array} \right.
\]
\[
\left\{ \begin{array}{ll}
D(f^{-1})=\mathbb{R_+} \quad;\quad Im(f^{-1})=[1, \infty[ \\[1em]
D(f^{-1})=\mathbb{R_+} \quad;\quad Im(f^{-1})=]-\infty , 1]
\end{array} \right.
\]
|
| \[ f(x) \] | Injective | |
|---|---|---|
|
\[ x^2 \]
|
\[ e^x \]
|
|
| Surjective |
\[ x^3-x \]
|
\[ x^3 \]
|
| \[ f(x) = \] | \[ 0 \] | \[ 3.7 \] | \[ 2x \] | \[ 3x + 4 \] | \[ x \] | \[ e^x \] | \[ x^3 -x \] | \[ x^3 \] | |||
| nulle | constante | linéraire | affine | monotone | injective | surjective | bijective |
|---|