| fonction
                        \[ f(x) \]  \[ x^2-2x+1 \]
                            \[ D(f)=\mathbb{R} \quad;\quad Im(f)=\mathbb{R}_+ \] | opposée
                        \[ -f(x) \]  \[ -(x^2-2x+1) \]
                            \[ D(-f)=\mathbb{R} \quad;\quad Im(f)=\mathbb{R}_- \] | 
| ?
                        \[ f(-x) \]  \[ (-x)^2-(-2x)+1 \]
                            \[ D(?)=\mathbb{R} \quad;\quad Im(?)=\mathbb{R}_+ \] | réciproque ("inverse")
                        \[f^{-1}(x)\]  \[
                            \left\{ \begin{array}{ll}
                            x \ge 0 \quad 1 + \sqrt{x} \\[1em]
                            x \le 0 \quad 1 - \sqrt{x}
                            \end{array} \right.
                            \]
                            \[
                            \left\{ \begin{array}{ll}
                            D(f^{-1})=\mathbb{R_+} \quad;\quad Im(f^{-1})=[1, \infty[ \\[1em]
                            D(f^{-1})=\mathbb{R_+} \quad;\quad Im(f^{-1})=]-\infty , 1]
                            \end{array} \right.
                            \] | 
| \[ f(x) \] | Injective | |
|---|---|---|
| 
                            \[ x^2 \]
                               | 
                            \[ e^x \]
                               | |
| Surjective | 
                            \[ x^3-x \]
                               | 
                            \[ x^3 \]
                               | 
| \[ f(x) = \] | \[ 0 \] | \[ 3.7 \] | \[ 2x \] | \[ 3x + 4 \] | \[ x \] | \[ e^x \] | \[ x^3 -x \] | \[ x^3 \] | |||
| nulle | constante | linéraire | affine | monotone | injective | surjective | bijective | 
|---|