Attention à ajouter la constante
Primitive | Fonction | Dérivée |
---|---|---|
\[ \frac{a\blue{x}^{b + 1}}{b + 1} + c\blue{x} \] | \[ a \blue{x}^b + c \] | \[ b a \blue{x}^{b - 1} \] |
\[ \frac{a b^{c \blue{x} + d}}{c ~ ln(b)} + e \blue{x}\] | \[ ab^{c\blue{x} + d} + e \] | \[ cab^{c\blue{x} +d} ln(a) \] |
\[ \frac{\blue{x} log_a(\blue{x})}{ln(a)} \] | \[ log_a( \blue{x} ) \] | \[ \frac{1}{ \blue{x} ln(a)} \] |
\[ \] | \[ \blue{x}^{\blue{x}} \] | \[ \blue{x}^{\blue{x}}ln(\blue{x} + 1) \] |
Fonction | Dérivée |
---|---|
\[ a \cdot f(\blue{x}) \] | \[ a \cdot f'(\blue{x}) \] |
\[ f(\blue{x} )\green±g(\blue{x} )\] | \[ f'(\blue{x} )\green±g'(\blue{x} )\] |
\[ f(\blue{x}) \cdot g(\blue{x}) \] | \[ f'(\blue{x}) \cdot g(\blue{x}) + f(\blue{x}) \cdot g'(\blue{x} )\] |
\[ \frac{f(\blue{x})}{g(\blue{x})} \] | \[ \frac{f'(\blue{x}) g(\blue{x}) - f(\blue{x}) g'(\blue{x})}{(g(\blue{x}))^2} \] |
\[ f(g(h(\blue{x}))) \] | \[ f'(g(h(\blue{x}))) \cdot g'(h(\blue{x})) \cdot h'(\blue{x}) \] |
\[ f^{-1}(\blue{x}) \] | \[ \frac{1}{f'(f^{-1}(\blue{x}))} \] |
Fonction | Dérivée | Fonction | Dérivée | |
---|---|---|---|---|
\[ sin(\blue{x}) \] | \[ cos(\blue{x}) \] | \[ cos(\blue{x}) \] | \[ -sin(\blue{x} )\] | |
\[ tan(\blue{x}) \] | \[ 1 + tan^2(\blue{x}) \] | \[ cot(\blue{x}) \] | \[ -(1 + cot^2(\blue{x})) \] | |
\[ sec(\blue{x}) \] | \[ sec(\blue{x})tan(\blue{x}) \] | \[ csc(\blue{x}) \] | \[ -csc(\blue{x})cot(\blue{x}) \] | |
\[ sin^{-1}(\blue{x}) \] | \[ \frac{1}{\sqrt{1 - x^2}} \] | \[ cos^{-1}(\blue{x}) \] | \[ -\frac{1}{\sqrt{1 - x^2}} \] | |
\[ tg^{-1}(\blue{x}) \] | \[ \frac{1}{1 + \blue{x}^2} \] | \[ cot^{-1}(\blue{x}) \] | \[ -\frac{1}{1 + \blue{x}^2} \] | |
\[ sec^{-1}(\blue{x}) \] | \[ \frac{1}{|\blue{x}|\sqrt{\blue{x}^2 - 1}} \] | \[ csc^{-1}(\blue{x}) \] | \[ -\frac{1}{|\blue{x}|\sqrt{\blue{x}^2 - 1}} \] |
Intégrales simples | |
---|---|
Fonction | Dérivée |
\[ \frac{1}{3} \blue{u}^3 \] | \[ \blue{u}^2 \blue{u}' \] |
\[ \frac{1}{2} \blue{u}^2 \] | \[ \blue{u} \blue{u}' \] |
\[ \blue{u} \] | \[ \blue{u}' \] |
\[ ln(\blue{u}) \] | \[ \frac{\blue{u}'}{\blue{u}} \] |
\[ - \frac{1}{\blue{u}} \] | \[ \frac{\blue{u}'}{\blue{u}^2} \] |
\[- \frac{1}{2\blue{u}^2} \] | \[ \frac{\blue{u}'}{\blue{u}^3} \] |
Intégrales utiles | |
---|---|
Fonction | Dérivée |
\[ \blue{x} ~ ln(\blue{x}) - x \] | \[ ln(\blue{x}) \] |
\[ ln(\blue{u}^n) \] | \[ \frac{n}{\blue{u}} \] |
\[ atg(\blue{u}) \] | \[ \frac{\blue{u}'}{1 + \blue{u}^2} \] |
\[ \frac{1}{a} atg(\frac{\blue{u}}{a}) \] | \[ \frac{\blue{u}'}{a^2 + \blue{u}^2} \] |
\[ (\blue{u} \blue{v})' - \blue{u}' \blue{v} \] | \[ \blue{u} \blue{v}' \] |
\[ t(\blue{x}) = f(x_0) + f'(x_0)(\blue{x} - x_0) \] | \[ \begin{aligned} & \text{linéarisation en } x_0 \\ & \text{fonction de la tangente en } x_0 \end{aligned}\] |
\[ \begin{aligned} & T_1(\blue{x}) = f(x_0) + f'(x_0)(\blue{x} - x_0) + o(x) \\[2em] & T_2(\blue{x}) = f(x_0) + f'(x_0)(\blue{x} - x_0) + \frac{f''(x_0)}{2!}(\blue{x}-x_0) + o(x^2) \\[2em] & T_3(\blue{x}) = f(x_0) + f'(x_0)(\blue{x} - x_0) + \frac{f''(x_0)}{2!}(\blue{x}-x_0) + \frac{f'''(x_0)}{3!}(\blue{x}-x_0) +o(x^3) \end{aligned}\] | |
\[ T_n(\blue{x}) = \sum_{k=0}^{n} \frac{f^{(k)}(x_0)}{k!} (\blue{x} - x_0)^k + R_n(x) \] | Formule générale |