Trigonométrie

\[ 0 \] \[ \frac{\tau}{12 }\] \[ \frac{\tau}{8} \] \[ \frac{\tau}{6} \] \[ \frac{\tau}{4} \]
\[ 0 \] \[ \frac{\pi}{6}\] \[ \frac{\pi}{4} \] \[ \frac{\pi}{3} \] \[ \frac{\pi}{2} \]
\[ sin \] \[ \frac{\sqrt{0}}{2} \] \[ \frac{\sqrt{1}}{2} \] \[ \frac{\sqrt{2}}{2} \] \[ \frac{\sqrt{3}}{2} \] \[ \frac{\sqrt{4}}{2} \]
\[ cos \] \[ \frac{\sqrt{4}}{2} \] \[ \frac{\sqrt{3}}{2} \] \[ \frac{\sqrt{2}}{2} \] \[ \frac{\sqrt{1}}{2} \] \[ \frac{\sqrt{0}}{2} \]
\[ tan \] \[ 0 \] \[ \frac{1}{\sqrt{3}} \] \[ 1 \] \[ \frac{\sqrt{3}}{1} \] \[ - \]

Quotients

\[ \begin{aligned} & \orange{\frac{sin}{cos}} = \frac{\green{tan}}{1} = \frac{1}{\green{cot}} = \blue{\frac{sec}{csc}} \end{aligned} \]
\[ \begin{aligned} & \blue{sec} = \frac{1}{\orange{cos}} \end{aligned} \]
\[ \begin{aligned} & \blue{csc} = \frac{1}{\orange{sin}} \end{aligned} \]

Angles

\[ \begin{aligned} & c^2 = a^2 + b^2 - 2ab\,cos(\theta) \\[1.5em] & \frac{A}{sin(\alpha)} = \frac{B}{sin(\beta)} = \frac{C}{sin(\gamma)} \end{aligned} \]

Sommes

\[ \begin{aligned} & sin(\alpha \green± \beta) = sin(\alpha)cos(\beta) \; \green± \; cos(\alpha)sin(\beta) \\[1.5em] & \rightarrow \quad sin( 2\alpha) = 2sin(\alpha)cos(\alpha) \\[2.5em] & cos(\alpha \green± \beta) = cos(\alpha)cos(\beta) \; \red∓ \; sin(\alpha)sin(\beta) \\[1.5em] & \rightarrow \quad cos(2 \alpha) = cos^2(\alpha) - sin^2(\alpha) \\[2.5em] & tan(\alpha \green± \beta) = \frac{tan(\alpha) \green± tan(\beta)}{1 \red∓ tan(\alpha)tan(\beta)} \\[1.5em] & \rightarrow \quad tan(2\alpha) = \frac{2tan(\alpha)}{1 - tan^2(\alpha)} \end{aligned} \]

Pythagore

\[ \begin{aligned} & sin^2(\theta) + cos^2(\theta) = 1 \\[1.5em] & \blue{co}sec^2(\theta) - \blue{co}tan^2(\theta) = 1 \end{aligned} \]